This week

1. Section 5.1: area estimating with finite sums
2. Section 5.2: limits of finite sums
3. Section 5.3: the definite integral
4. Section 5.4: the fundamental theorem of calculus

The integraph, an instrument for measuring integrals
The **Σ**-notation

We can write sums with the **Σ**-notation:

\[\sum_{k=M}^{N} a_k = a_M + a_{M+1} + a_{M+2} + \cdots + a_{N-1} + a_N \]

- **Σ** is the Greek letter “S” (pronounced as 'sigma'), which refers to “Sum”.
- **k** is called the **index**.
- The index starts counting at **M** and stops counting at **N**.
- **a_k** is the **k-th term** of the sum, and is a formula containing **k**.
- If **N** < **M** then the sum is equal to 0 by definition.
- The index is a **dummy**.

\[\sum_{k=3}^{6} a_k = \sum_{p=3}^{6} a_p = a_3 + a_4 + a_5 + a_6 \]

The **Σ**-notation

\[\sum_{k=1}^{12} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 \]
\[= 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 + 121 + 144 \]
\[= 650. \]
Examples

\[\sum_{k=1}^{4} (-1)^{k+1} = \]

\[\sum_{k=1}^{2} \frac{k}{k+1} = \]

Arithmetic series

Theorem

The sum of the first \(n \) positive integers is equal to \(\frac{n(n+1)}{2} \).

- Define \(S_n \) as the sum of the first \(n \) positive integers:
 \[S_n = 1 + 2 + \cdots + (n - 1) + n. \]

 - with \(\Sigma \)-notation:
 \[S_n = \sum_{k=1}^{n} k. \]

 - Write out the terms in \(S_n \) twice:
 \[S_n = 1 + 2 + \cdots + (n - 1) + n \]
 \[S_n = n + (n - 1) + \cdots + 2 + 1 \]
Rules

- **Sum- and difference rule:**
 \[\sum_{k=M}^{N} (a_k + b_k) = \sum_{k=M}^{N} a_k + \sum_{k=M}^{N} b_k, \quad \text{and} \quad \sum_{k=M}^{N} (a_k - b_k) = \sum_{k=M}^{N} a_k - \sum_{k=M}^{N} b_k. \]

- **Constant multiple rule:**
 \[\sum_{k=M}^{N} c \ a_k = c \sum_{k=M}^{N} a_k. \]

- **Constant value rule:**
 \[\sum_{k=M}^{N} c = (N - M + 1) c. \]

- **Splitting rule:**
 \[\sum_{k=M}^{N} a_k = \sum_{k=M}^{P} a_k + \sum_{k=P+1}^{N} a_k. \]

Example

- Define \(T_n \) as the sum of the first \(n \) odd integers:
 \[T_n = 1 + 3 + \cdots + (2n - 1). \]

- Notice that
 \[T_n + (2 + 4 + \cdots + 2n) = 1 + 2 + 3 + \cdots + (2n - 1) + 2n = \frac{2n(2n + 1)}{2} = n(2n + 1) = 2n^2 + n. \]

- Furthermore
 \[2 + 4 + \cdots + 2n = \sum_{k=1}^{n} 2k = 2 \sum_{k=1}^{n} k = 2 \cdot \frac{n(n + 1)}{2} = n(n + 1) = n^2 + n. \]

- Therefore
 \[T_n = (2n^2 + n) - (n^2 + n) = n^2. \]
Example

The sum of the first n odd integers is equal to n^2:

\[
\begin{array}{cccccccc}
1 & 1 \\
2 & 3 \\
3 & 5 \\
4 & 7 \\
5 & 9 \\
6 & 11 \\
\vdots & \\
\end{array}
\]

Partitions

2.1

Definition

A partition of the interval $[a, b]$ in n subintervals is a sequence x_0, x_1, \ldots, x_n constructed as follows:

(i) $\Delta x = \frac{b - a}{n}$

(ii) $x_k = a + k\Delta x$ \hspace{1cm} ($k = 0, 1, \ldots, n$)

- Note that

 $x_0 = a$, \hspace{1cm} $x_n = b$, \hspace{1cm} $x_k - x_{k-1} = \Delta x$.

- The number Δx is called the mesh of the partition.
Integrals as limits of Riemann sums

Approximate the area of the triangle with vertices \((0,0), (1,0)\) and \((1,1)\) with a Riemann sum.

- Define the partition \(x_k = k \Delta x = \frac{k}{n}\) with \(\Delta x = \frac{1}{n}\).
- The Riemann sum of \(f(x) = x\) is
 \[
 \sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n}.
 \]
Integrals as limits of Riemann sums

3.2

Evaluate the Riemann sum:

\[\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \]

If we let \(n \) approach infinity then

\[\lim_{n \to \infty} \sum_{k=1}^{n} x_k \Delta x = \]

For a positive function, a Riemann sum can be regarded as the approximation of the surface area of the region \(R \) bounded by the graph of \(f \), the \(x \) axis, and the lines \(x = a \) and \(x = b \).

Definition

The definite integral of \(f \) over the interval \([a, b]\) is defined as

\[\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \left(\sum_{k=1}^{n} f(x_k) \cdot \Delta x \right) \]

A definite integral can be regarded as the area of the region \(R \).
Laws of integration

- The variable in the integral is a dummy:
 \[\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(u) \, du \]

- Linearity:
 \[\int_{a}^{b} \alpha f(x) + \beta g(x) \, dx = \alpha \int_{a}^{b} f(x) \, dx + \beta \int_{a}^{b} g(x) \, dx \]

- Additivity:
 \[\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx \]

- Interchanging the upper and lower limit gives a minus sign:
 \[\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \]

Constant functions

\[\int_{a}^{b} c \, dx = c(b - a) \]

Notice that the Riemann sum of any partition is
\[\sum_{k=1}^{n} c \Delta x = n \cdot c \Delta x = c \frac{b - a}{n} = c(b - a). \]
Laws of integration

\[\int_a^b x \, dx = \frac{1}{2} b^2 - \frac{1}{2} a^2 \]

- Note that \(\frac{1}{2} b^2 - \frac{1}{2} a^2 = \frac{1}{2} (b + a)(b - a) = \text{Area}(R) \).
- The regions \(T \) and \(R \) have the same area.

Displacement and velocity

- Differentiate displacement to compute velocity:
 \[v(t) = s'(t) \]
- The displacement can be computed from the velocity by integrating:
 \[s(t) = \lim_{n \to \infty} \sum_{k=1}^{n} v(t_k) \Delta t = \int_0^t v(\tau) \, d\tau \]

The integral \(\int_0^t v(\tau) \, d\tau \) is a function \(s(t) \) whose derivative is \(v \).
Antiderivatives

Definition

We call a function F an **antiderivative** for f if $F'(x) = f(x)$.

- Antiderivatives are not unique. If F is an antiderivative for f, then so is $F(x) + C$ for any constant C:
 \[
 \frac{d}{dx}(F(x) + C) = F'(x) = f(x).
 \]

Theorem

Let (x_0, y_0) be a point in the plane. Then there is a unique antiderivative F of f for which $F(x_0) = y_0$.

Example

- Let $f(x) = e^x + 1$, then $F(x) = e^x + x$ is an antiderivative of f.
- For arbitrary C the function
 \[
 F_c(x) = e^x + x + C
 \]
 is also an antiderivative of f.
- There is only one antiderivative of f for which $F(0) = 4$:
 \[
 F(x) = e^x + x + 3.
 \]
- The correct value for C is found by solving the equation $F_c(0) = 4$:
 \[
 4 = F_c(0) = e^0 + 0 + C = 1 + C,
 \]
 hence $C = 3$.
The inverse of differentiation

The Fundamental Theorem of Calculus

1. Define the function
 \[F(x) = \int_a^x f(t) \, dt, \]
 then \(F \) is an antiderivative for \(f \), in other words: \(F'(x) = f(x) \).

2. If \(F \) is an antiderivative for \(f \) then
 \[\int_a^b f(t) \, dt = F(b) - F(a). \]

- Notation: \(F(b) - F(a) = \left[F(x) \right]_a^b = F(x) \bigg|_a^b \).
- The function \(F(x) = \int_a^x f(t) \, dt \) also satisfies \(F(a) = 0 \), so \(F \) is the unique antiderivative of \(f \) for which \(F(a) = 0 \).

Define \(F(x) = \int_a^x f(t) \, dt \), then

\[
F'(x) = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt = f(x).
\]
Integrals with e^x

The fundamental theorem of Calculus:

$$\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a) \quad \text{where } F' = f.$$

- $\int_{\ln 2}^0 e^x \, dx = \quad \text{(answer)}$

Integrals with \sin and \cos

The fundamental theorem of Calculus:

$$\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a) \quad \text{where } F' = f.$$

- $\int_0^{\pi/2} \cos(x) \, dx = \quad \text{(answer)}$
- $\int_{\pi}^{2\pi} \sin(x) \, dx = \quad \text{(answer)}$
Power functions

- Notice that for arbitrary real α we have
 \[\frac{d}{dx}(x^{\alpha+1}) = (\alpha + 1)x^\alpha. \]

- Hence, if $\alpha \neq -1$:
 \[\frac{d}{dx}\left(\frac{1}{\alpha+1}x^{\alpha+1}\right) = x^\alpha. \]

The antiderivative of x^α is: $\frac{1}{\alpha+1}x^{\alpha+1} + C$ if $\alpha \neq -1$.

The antiderivative of $x^{-1} = \frac{1}{x}$ is: $\ln|x| + C$.

See lecture 5

Integrals with powers of x

The fundamental theorem of Calculus:

\[\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a) \quad \text{where } F' = f. \]

- $\int_0^2 x^3 \, dx =$
\int_{0}^{1} 2x^3 - 2x + 1 \, dx =